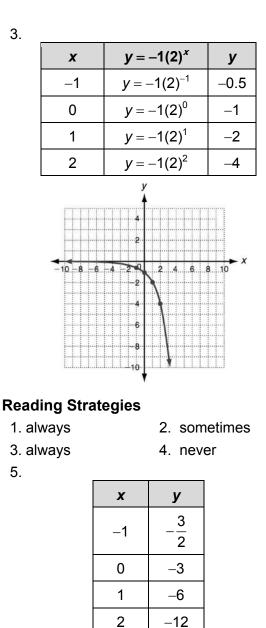
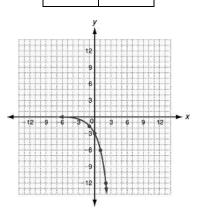

_____ Date _____

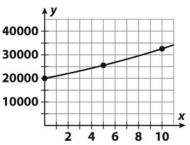
	SON	Exponential Growth and Decay		
10)-2	Practice and Problem Solving: A/B		
finc	d the Annu	exponential growth function to model each situation. value of the function after the given amount of time. and sales for a fast food restaurant are \$650,000 are increasing at a rate of 4% per year; 5 years	Then	
2.		population of a school is 800 students and is asing at a rate of 2% per year; 6 years		
3.		ng a certain period of time, about 70 northern sea s had an annual growth rate of 18%; 4 years		
finc	the The	exponential decay function to model each situation. To value of the function after the given amount of time. population of a town is 2500 and is decreasing rate of 3% per year; 5 years	Γhen	
5.		value of a company's equipment is \$25,000 and eases at a rate of 15% per year; 8 years		
		exponential growth or decay function to model each . Then graph each function.		


- 6. The population is 20,000 now and expected to grow at an annual rate of 5%.
- 7. A boat that cost \$45,000 is depreciating at a rate of 20% per year.

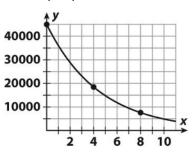


Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Success for English Learners


- 1. There would be 54 insects.
- 2. The graph of each function has the same general shape.

LESSON 10-2


Practice and Problem Solving: A/B

- 1. $y = 650,000(1.04)^{X}$; sales ≈ \$790,824.39
- 2. $y = 800(1.02)^{x}$; population ≈ 901
- 3. $y = 70(1.18)^{x}$; population ≈ 136
- 4. $y = 2,500(0.97)^{X}$; population $\approx 2,147$
- 5. $y = 25,000(0.85)^{X}$; value \approx \$6,812.26

6. $y = 20,000(1.05)^{x}$

7. $y = 45,000(0.8)^{x}$

Practice and Problem Solving: C

- 1. $v_1(t) = 10,000(1.04)^t$; $v_2(t) = 8000(1.06)^t$
- 2. $v_1(5) = $12,166.53; v_2(5) = $10,705.80;$ the difference is less because the smaller investment is growing at twice the interest rate.
- 3. Yes, the value of Investment 2 will exceed the value of Investment 1 by the end of Year 12. At that point, $v_2(12) = $16,097.57$ and $v_1(12) =$ \$16,010.32.
- 4. Odette would earn more. For example, at the end of 1 year, Investment 1 is worth \$10,400 using annual compounding and \$10,408.08 using daily compounding.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.