

A PERFECT SQUARE TRINOMIAL

A Prefect Square Trinomial is a quadratic that has two identical factors. $y = x^2 + 6x + 9 \rightarrow (x + 3)(x + 3) \rightarrow (x + 3)^2$

Problem 1:

$$\sqrt{X^{k}} = X$$

Is the quadratic a perfect square trinomial? If so find the factors.

$$y = x^{2} - 8x + 16 = (x - 4)^{1} \qquad y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$x - 4x^{2} - 4x^{2} - 6x$$

$$-4x^{2} - 4x^{2} - 6x$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$y = 4x^{2} + 12x + 9$$

$$(x + 3)^{2}$$

$$(x + 3)^{2}$$

$$(x + 3)^{2}$$

$$(x + 3)^{2}$$

Problem 1A:

y

Is the quadratic a perfect square trinomial? If so find the factors.

9

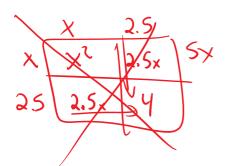
1-24x

$$= x^{2} + 12x + 36$$

$$y = 16x^{2} - 24x + 9$$

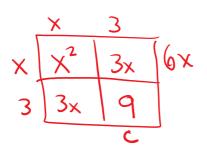
$$x + 6 + 36$$

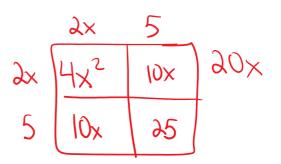
$$y = 16x^{2} - 24x + 9$$


$$(x + 6)^{2} - (x + 9)^{2} - (x + 9)^{2} + (x +$$

Problem 1B:

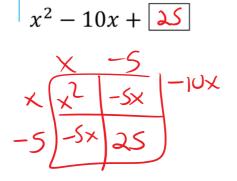
Is the quadratic a perfect square trinomial? If so find the factors.

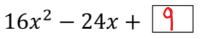

$$y = x^2 + 5x + 4$$

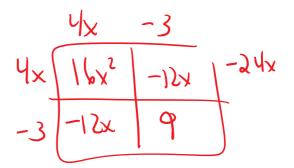

$$y = 9x^2 - 12x + 4$$

PROBLEM 2: Complete the perfect square trinomial.

 $x^2 + 6x + 9$

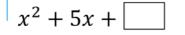





 $4x^2 + 20x + 25$

PROBLEM 2A:

Complete the perfect square trinomial.



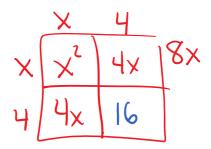
PROBLEM 2B:

Complete the perfect square trinomial.

 $4x^2 + 12x +$

PROBLEM 3:

.


Rewrite the quadratic in the form $(mx - p)^2 = q$.

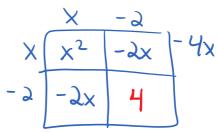
$$y = x^{2} + 8x + 12$$

$$x^{2} + 8x + 1\lambda = 0$$

$$x^{2} + 8x + 1\zeta = -(\lambda + 16)$$

$$(x + 4)^{\lambda} = 4$$

PROBLEM 3A:


Rewrite the quadratic in the form $(mx - p)^2 = q$.

$$y = x^{2} - 4x - 77$$

$$x^{2} - 4x - 77 = 0$$

$$x^{2} - 4x + 4 = 77 + 4$$

$$(x - 2)^{2} = 81$$

PROBLEM 3B:

Rewrite the quadratic in the form $(mx - p)^2 = q$.

$$y = x^{2} - 8x - 9$$

$$x^{2} - 8x - 9 = 0$$

$$x^{2} - 8x + 16 = 9 + 16$$

$$\sqrt{(x - 4)^{2}} = \sqrt{25}$$

$$x - 4 = -1 = -1$$

$$x - 4 = -9$$

$$x - 4 = -1$$

$$x - 4 = -9$$

$$x - 4 = -1$$

$$x - 4 = -1$$

PROBLEM 3C:

Rewrite the quadratic in the form $(mx - p)^2 = q$.

 $y = x^2 + 6x - 16$