$$
\text { DAILY QUEST: } \quad \frac{V=\frac{1}{2} b h}{h}
$$

1) Given the formula solve the equation in terms of b.

Dob	Undo	
$\cdot \frac{1}{2}$	$\cdot 2$	\hat{Y}
$\cdot h$	$\div h$	J

2) Given the graph. State the domain and range in inequality notation.

$$
\left\{\begin{array}{l}
\text { Domain: } x \geq 4 \\
\text { Range: }-\infty<y<\infty
\end{array}\right.
$$

Goal: To solve equations/inequalities in math and real world context and to write
LESSON 5.3 II. ARITHMETIC SEQUENCES rules for arithmetic sequence.
Obi: SWBAT write an both explicit rules for an arithmetic sequence.
Obi: SWBAT generate an arithmetic sequence given explicit

PROBLEM 1:

A go-cart racing track charges $\$ 7$ for a go-cart license and $\$ 2$ per lap. If you list the charges for 1 lap, 2 laps, 3 laps, and so on, in order, the list forms a sequence of numbers. 9, 11, 13, 15,...

$\operatorname{Lap}(x)$	0	1	2	3	4	5	6	7	8
Cost $f(x)$	7	9	11	13	15	17	19	21	23

A) Complete the table.
B) What is $f(2)=11$

$$
\downarrow
$$

$$
f(\underline{3})=13 \quad f(\underline{1})=\underline{9}
$$

C) Write an equation for the situation above.

$$
f(x)=2 x+7
$$

SEQUENCES

> A sequence is simply a list of numbers/ordered pairs that have a pattern to them.

Sequences are created with a equation call an explicit rule. These rules are exactly like the linear equations which can help us make tables, graph, etc.

ARITHMETIC SEQUENCES AND THEIR NOTATION

Sequence:	$5,10,15,20,25$	\ldots	n			
Function Notation: $f(1)$	$f(2)$	$f(3)$	$f(4)$	$f(5)$	\ldots	$f(n)$
Term position: \quad Term 1 , Term 2, Term 3, Term 4 , Term 5	\ldots	$n^{\text {th }}$ Term				

EXPLORE WRITING AN EXPLICIT FOR AN ARITHMETIC SEQUENCE.

$$
\begin{array}{cccc}
n & f(n) d & f(n)=5 n+16 & f(n)=5(n-1)+16 \\
1 & 16\rangle+5 & f(2)=5(2)+16 & f(2)=5(2-1)+16 \\
\rightarrow 2 & 21\rangle+5 & 10+16 & 5(1)+16 \\
3 & 26>+5 & f(2)=26 & 5+16 \\
4 & 31>+5 & & f(2)=21 \\
5 & 36>+5 & f(3)=5(3)+16 & 15+16 \\
6 & 41> & \\
\text { Explicit Rue } & f(3)=31 & \\
f(n)=5 n+11 & & \\
f(n)=5(n-1)+16 & &
\end{array}
$$

EXPLICIT RULES FOR ARITHMETIC SEQUENCE

Output
sequence

| Common Difference |
| :--- |\quad| Term \# |
| :--- |
| Position |

Term 0
The number before
the one you see in
the sequence.

EXPLICIT RULES FOR ARITHMETIC SEQUENCE

PROBLEM 2:

Write both explicit rules for the sequence shown in the table below.

PROBLEM RA:

Write both explicit rules for the sequence shown in the table below.

n	$f(n)$	$f(n)=d n+f(0)$
0	1	1
1	$1>+4$	$f(n)=4 n-3$
2	$5>+4$	
3	9	
4	13	$f(n)=d(n-1)+f(1)$
5	17	$f(n)=4(n-1)+1$
6	21	

PROBLEM 2B:

Write an explicit rule for the sequence shown in the table below.

n	$f(n)$
1	28
2	26
3	24
4	22
5	20
6	18

PROBLEM 3: SHOULD WE CONNECT THE POINTS?

A go-cart racing track charges $\$ 1$ for a go-cart license and $\$ 2$ per lap.

Lap (\boldsymbol{n})	Cost $\boldsymbol{f}(\boldsymbol{n})$
1	3
2	5
3	7
4	9
5	11
6	13
7	15

