

STATION 1

Write both explicit rules and the recursive rule for the given the sequence.

1) $4,6,8,10, \ldots$
2) $45,42,39,36, \ldots$
3) $-5,-11,-17,-23, \ldots$
4) $-34,-29,-24,-19, \ldots$
5) $35,43,51,59, \ldots$

STATION 2

Find the $5^{\text {th }}$ term in the sequence given the rule.

1) $f(n)=-3 n+54$
2) $f(1)=13 ; f(n)=6+f(n-1)$
3) $f(n)=-2(n-1)+9$
4) $f(n)=10 n-32$
5) $f(n)=-10 ; f(n)=-4+f(n-1)$

STATION 3

Graph the equation. Use a table to help you graph. 1) $y=2 x-4$
2) $x=3$
3) $y=-3 x+8$
4) $y=-4$
5) $y=3 x+1$

STATION 4 Given the graphs, state the domains.

2)

4)

6)

PROBLEM 1: AS A CLASS

Jimbo goes to a go-cart track. He spend \$3 per lap and $\$ 6$ to enter the go-cart track. He only has $\$ 24$ to spend at the go-cart track.

Determine the domain of the situation above.

PROBLEM IA: AS A CLASS:

Mary gives James 20 action figures as a surprise gift. He does not like action figures, so he decides to sell them on Ebay. He sells 2 action figures on Ebay each week.. A function relating the values of the number of action figures, $v(n)$, and the number of weeks n is given as $v(n)=20-2 n$.

Graph this and state the domain.

ANSWERS FOR THE STATIONS IN THE NEXT SLIDES

STATION 1

Write both explicit rules and the recursive rule for the given the sequence.

1) $4,6,8,10, \ldots \quad f(n)=2 n+2 \quad f(n)=2(n-1)+4 \quad f(1)=4 ; f(n)=2+f(n-1)$ $f(n)=2(n-1)+4$

$$
f(n)=-3 n+48 \quad f(1)=45 ; f(n)=-3+f(n-1)
$$

2) $45,42,39,36, \ldots f(n)=-3(n-1)+45$

$$
f(n)=-6 n+1 \quad f(1)=-5
$$

3) $-5,-11,-17,-23, \ldots f(n)=-6(n-1)-5 \quad f(n)=-6+f(n-1)$
4) $-34,-29,-24,-19, \ldots$
m

$$
\begin{array}{ll}
f(n)=8 n+27 & f(1)=34 \\
f(n)=8(n-1)-34 & f(n) 8+f(n-1)
\end{array}
$$

STATION 2

Find the $5^{\text {th }}$ term in the sequence given the rule.

1) $f(n)=-3 n+54 \quad f(5)=39$
2) $f(1)=13 ; f(n)=6+f(n-1) \quad f(5)=37$
3) $f(n)=-2(n-1)+9 \quad f(5)=1$
4) $f(n)=10 n-32 \quad f(5)=18$
5) $f(n)=-10 ; f(n)=-4+f(n-1) \quad f(s)=-26$

STATION 3

Graph the equation. Use a table to help you graph. 1) $y=2 x-4$
2) $x=3$
3) $y=-3 x+8$
4) $y=-4$
5) $y=3 x+1$

STATION 4 Given the graphs, state the domains.

Domain: $0 \leq x \leq 12$

Page 16

Domain: $x \geq 0$

$$
0 \leq x \leq \infty
$$

4)

Page 17

